MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. EN 2.4650 Nickel

C40500 penny bronze belongs to the copper alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 49
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Shear Strength, MPa 210 to 310
730
Tensile Strength: Ultimate (UTS), MPa 270 to 540
1090
Tensile Strength: Yield (Proof), MPa 79 to 520
650

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 1020
1350
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 42
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
320
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
1030
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.5 to 17
36
Strength to Weight: Bending, points 10 to 17
28
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 9.5 to 19
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 94 to 96
0 to 0.2
Iron (Fe), % 0 to 0.050
0 to 0.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Tin (Sn), % 0.7 to 1.3
0
Titanium (Ti), % 0
1.9 to 2.4
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0