MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. CC480K Bronze

Both C40500 penny bronze and CC480K bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 49
13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 270 to 540
300
Tensile Strength: Yield (Proof), MPa 79 to 520
180

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 1060
1010
Melting Onset (Solidus), °C 1020
900
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 160
63
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
11
Electrical Conductivity: Equal Weight (Specific), % IACS 42
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
35
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
59
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
35
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
140
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.5 to 17
9.6
Strength to Weight: Bending, points 10 to 17
11
Thermal Diffusivity, mm2/s 48
20
Thermal Shock Resistance, points 9.5 to 19
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 94 to 96
86 to 90
Iron (Fe), % 0 to 0.050
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 1.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.020
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.7 to 1.3
9.0 to 11
Zinc (Zn), % 2.1 to 5.3
0 to 0.5
Residuals, % 0 to 0.5
0