MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. S30435 Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
51
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 46 to 82
77
Shear Modulus, GPa 43
76
Shear Strength, MPa 210 to 310
370
Tensile Strength: Ultimate (UTS), MPa 270 to 540
510
Tensile Strength: Yield (Proof), MPa 79 to 520
170

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1020
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 42
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 43
40
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
77
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 17
18
Strength to Weight: Bending, points 10 to 17
18
Thermal Diffusivity, mm2/s 48
4.2
Thermal Shock Resistance, points 9.5 to 19
12

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 94 to 96
1.5 to 3.0
Iron (Fe), % 0 to 0.050
66.9 to 75.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
7.0 to 9.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0