MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. S35500 Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 210 to 310
810 to 910
Tensile Strength: Ultimate (UTS), MPa 270 to 540
1330 to 1490
Tensile Strength: Yield (Proof), MPa 79 to 520
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 42
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
3610 to 4100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 17
47 to 53
Strength to Weight: Bending, points 10 to 17
34 to 37
Thermal Diffusivity, mm2/s 48
4.4
Thermal Shock Resistance, points 9.5 to 19
44 to 49

Alloy Composition

Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
73.2 to 77.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0

Comparable Variants