MakeItFrom.com
Menu (ESC)

C41300 Brass vs. C81400 Copper

Both C41300 brass and C81400 copper are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.0 to 44
11
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 53 to 88
69
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 300 to 630
370
Tensile Strength: Yield (Proof), MPa 120 to 570
250

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1040
1090
Melting Onset (Solidus), °C 1010
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
60
Electrical Conductivity: Equal Weight (Specific), % IACS 31
61

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
36
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
260
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6 to 20
11
Strength to Weight: Bending, points 11 to 19
13
Thermal Diffusivity, mm2/s 40
75
Thermal Shock Resistance, points 11 to 22
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 89 to 93
98.4 to 99.38
Iron (Fe), % 0 to 0.050
0
Lead (Pb), % 0 to 0.1
0
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0
0 to 0.5