MakeItFrom.com
Menu (ESC)

C41300 Brass vs. S30415 Stainless Steel

C41300 brass belongs to the copper alloys classification, while S30415 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 44
45
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 53 to 88
84
Shear Modulus, GPa 42
77
Shear Strength, MPa 230 to 370
470
Tensile Strength: Ultimate (UTS), MPa 300 to 630
670
Tensile Strength: Yield (Proof), MPa 120 to 570
330

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 1010
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
43
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
280
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6 to 20
24
Strength to Weight: Bending, points 11 to 19
22
Thermal Diffusivity, mm2/s 40
5.6
Thermal Shock Resistance, points 11 to 22
15

Alloy Composition

Carbon (C), % 0
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
67.8 to 71.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
9.0 to 10
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0 to 0.5
0