MakeItFrom.com
Menu (ESC)

C41300 Brass vs. S32053 Stainless Steel

C41300 brass belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 44
46
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 53 to 88
83
Shear Modulus, GPa 42
80
Shear Strength, MPa 230 to 370
510
Tensile Strength: Ultimate (UTS), MPa 300 to 630
730
Tensile Strength: Yield (Proof), MPa 120 to 570
330

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.1
Embodied Energy, MJ/kg 44
83
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
270
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6 to 20
25
Strength to Weight: Bending, points 11 to 19
22
Thermal Diffusivity, mm2/s 40
3.3
Thermal Shock Resistance, points 11 to 22
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
41.7 to 48.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0 to 0.5
0