MakeItFrom.com
Menu (ESC)

C41500 Brass vs. 6262A Aluminum

C41500 brass belongs to the copper alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C41500 brass and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 2.0 to 42
4.5 to 11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 220 to 360
190 to 240
Tensile Strength: Ultimate (UTS), MPa 340 to 560
310 to 410
Tensile Strength: Yield (Proof), MPa 190 to 550
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 1030
640
Melting Onset (Solidus), °C 1010
580
Specific Heat Capacity, J/kg-K 380
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
45
Electrical Conductivity: Equal Weight (Specific), % IACS 29
140

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 330
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
540 to 1000
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 11 to 18
31 to 41
Strength to Weight: Bending, points 12 to 17
36 to 44
Thermal Diffusivity, mm2/s 37
67
Thermal Shock Resistance, points 12 to 20
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 89 to 93
0.15 to 0.4
Iron (Fe), % 0 to 0.050
0 to 0.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0.4 to 0.8
Tin (Sn), % 1.5 to 2.2
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 4.2 to 9.5
0 to 0.25
Residuals, % 0
0 to 0.15