MakeItFrom.com
Menu (ESC)

C41500 Brass vs. ACI-ASTM CB30 Steel

C41500 brass belongs to the copper alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 340 to 560
500
Tensile Strength: Yield (Proof), MPa 190 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
10
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
18
Strength to Weight: Bending, points 12 to 17
18
Thermal Diffusivity, mm2/s 37
5.6
Thermal Shock Resistance, points 12 to 20
17

Alloy Composition

Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 89 to 93
0 to 1.2
Iron (Fe), % 0 to 0.050
72.9 to 82
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0