MakeItFrom.com
Menu (ESC)

C41500 Brass vs. AISI 304N Stainless Steel

C41500 brass belongs to the copper alloys classification, while AISI 304N stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is AISI 304N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
9.1 to 45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
420 to 700
Tensile Strength: Ultimate (UTS), MPa 340 to 560
620 to 1180
Tensile Strength: Yield (Proof), MPa 190 to 550
270 to 850

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
98 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
180 to 1830
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
22 to 42
Strength to Weight: Bending, points 12 to 17
21 to 32
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 12 to 20
14 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
66.4 to 73.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0