MakeItFrom.com
Menu (ESC)

C41500 Brass vs. AISI 348H Stainless Steel

C41500 brass belongs to the copper alloys classification, while AISI 348H stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
40
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 62 to 90
79
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
400
Tensile Strength: Ultimate (UTS), MPa 340 to 560
580
Tensile Strength: Yield (Proof), MPa 190 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
20
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
21
Strength to Weight: Bending, points 12 to 17
20
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 12 to 20
13

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
63.8 to 73.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0