MakeItFrom.com
Menu (ESC)

C41500 Brass vs. AISI 420F Stainless Steel

C41500 brass belongs to the copper alloys classification, while AISI 420F stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is AISI 420F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 360
460
Tensile Strength: Ultimate (UTS), MPa 340 to 560
740
Tensile Strength: Yield (Proof), MPa 190 to 550
430

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 45
28
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
480
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
27
Strength to Weight: Bending, points 12 to 17
23
Thermal Diffusivity, mm2/s 37
6.8
Thermal Shock Resistance, points 12 to 20
27

Alloy Composition

Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
82.4 to 87.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0