MakeItFrom.com
Menu (ESC)

C41500 Brass vs. EN 1.4919 Stainless Steel

C41500 brass belongs to the copper alloys classification, while EN 1.4919 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is EN 1.4919 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 220 to 360
400
Tensile Strength: Ultimate (UTS), MPa 340 to 560
590
Tensile Strength: Yield (Proof), MPa 190 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
950
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.8
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
21
Strength to Weight: Bending, points 12 to 17
20
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 12 to 20
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
62.8 to 71.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0