MakeItFrom.com
Menu (ESC)

C41500 Brass vs. EN 1.4980 Stainless Steel

C41500 brass belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 220 to 360
630
Tensile Strength: Ultimate (UTS), MPa 340 to 560
1030
Tensile Strength: Yield (Proof), MPa 190 to 550
680

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
26
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
6.0
Embodied Energy, MJ/kg 45
87
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
1180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 18
36
Strength to Weight: Bending, points 12 to 17
28
Thermal Diffusivity, mm2/s 37
3.5
Thermal Shock Resistance, points 12 to 20
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
49.2 to 58.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0