MakeItFrom.com
Menu (ESC)

C41500 Brass vs. CC480K Bronze

Both C41500 brass and CC480K bronze are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 340 to 560
300
Tensile Strength: Yield (Proof), MPa 190 to 550
180

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1030
1010
Melting Onset (Solidus), °C 1010
900
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 120
63
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
11
Electrical Conductivity: Equal Weight (Specific), % IACS 29
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
35
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 45
59
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
35
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
140
Stiffness to Weight: Axial, points 7.1
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 18
9.6
Strength to Weight: Bending, points 12 to 17
11
Thermal Diffusivity, mm2/s 37
20
Thermal Shock Resistance, points 12 to 20
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 89 to 93
86 to 90
Iron (Fe), % 0 to 0.050
0 to 0.2
Lead (Pb), % 0 to 0.1
0 to 1.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.020
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.2
9.0 to 11
Zinc (Zn), % 4.2 to 9.5
0 to 0.5
Residuals, % 0 to 0.5
0