MakeItFrom.com
Menu (ESC)

C41500 Brass vs. CC499K Bronze

Both C41500 brass and CC499K bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 340 to 560
260
Tensile Strength: Yield (Proof), MPa 190 to 550
120

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1030
1000
Melting Onset (Solidus), °C 1010
920
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 120
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
12
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 45
51
Embodied Water, L/kg 330
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
27
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
65
Stiffness to Weight: Axial, points 7.1
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 18
8.1
Strength to Weight: Bending, points 12 to 17
10
Thermal Diffusivity, mm2/s 37
22
Thermal Shock Resistance, points 12 to 20
9.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 89 to 93
84 to 88
Iron (Fe), % 0 to 0.050
0 to 0.3
Lead (Pb), % 0 to 0.1
0 to 3.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.5 to 2.2
4.0 to 6.0
Zinc (Zn), % 4.2 to 9.5
4.0 to 6.0
Residuals, % 0 to 0.5
0