MakeItFrom.com
Menu (ESC)

C41500 Brass vs. Grade 24 Titanium

C41500 brass belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
11
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Shear Strength, MPa 220 to 360
610
Tensile Strength: Ultimate (UTS), MPa 340 to 560
1010
Tensile Strength: Yield (Proof), MPa 190 to 550
940

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 1030
1610
Melting Onset (Solidus), °C 1010
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
43
Embodied Energy, MJ/kg 45
710
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
4160
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 18
63
Strength to Weight: Bending, points 12 to 17
50
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 12 to 20
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 89 to 93
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0
0 to 0.4