MakeItFrom.com
Menu (ESC)

C41500 Brass vs. Grade CX2MW Nickel

C41500 brass belongs to the copper alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 2.0 to 42
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
84
Tensile Strength: Ultimate (UTS), MPa 340 to 560
620
Tensile Strength: Yield (Proof), MPa 190 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1030
1550
Melting Onset (Solidus), °C 1010
1490
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
65
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 45
170
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
290
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11 to 18
19
Strength to Weight: Bending, points 12 to 17
18
Thermal Diffusivity, mm2/s 37
2.7
Thermal Shock Resistance, points 12 to 20
17

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
2.0 to 6.0
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.5 to 2.2
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0