MakeItFrom.com
Menu (ESC)

C41500 Brass vs. C18400 Copper

Both C41500 brass and C18400 copper are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.0 to 42
13 to 50
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 62 to 90
16 to 84
Shear Modulus, GPa 42
44
Shear Strength, MPa 220 to 360
190 to 310
Tensile Strength: Ultimate (UTS), MPa 340 to 560
270 to 490
Tensile Strength: Yield (Proof), MPa 190 to 550
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1030
1080
Melting Onset (Solidus), °C 1010
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
80
Electrical Conductivity: Equal Weight (Specific), % IACS 29
81

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
54 to 980
Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 18
8.5 to 15
Strength to Weight: Bending, points 12 to 17
10 to 16
Thermal Diffusivity, mm2/s 37
94
Thermal Shock Resistance, points 12 to 20
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 89 to 93
97.2 to 99.6
Iron (Fe), % 0 to 0.050
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Lithium (Li), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0 to 0.7
Residuals, % 0
0 to 0.5