MakeItFrom.com
Menu (ESC)

C41500 Brass vs. C84000 Brass

Both C41500 brass and C84000 brass are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 340 to 560
250
Tensile Strength: Yield (Proof), MPa 190 to 550
140

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1030
1040
Melting Onset (Solidus), °C 1010
940
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
72
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
16
Electrical Conductivity: Equal Weight (Specific), % IACS 29
17

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
58
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
83
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 18
8.2
Strength to Weight: Bending, points 12 to 17
10
Thermal Diffusivity, mm2/s 37
22
Thermal Shock Resistance, points 12 to 20
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 89 to 93
82 to 89
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.1
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 1.5 to 2.2
2.0 to 4.0
Zinc (Zn), % 4.2 to 9.5
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7