MakeItFrom.com
Menu (ESC)

C41500 Brass vs. C95200 Bronze

Both C41500 brass and C95200 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
29
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 340 to 560
520
Tensile Strength: Yield (Proof), MPa 190 to 550
190

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1030
1050
Melting Onset (Solidus), °C 1010
1040
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 120
50
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
11
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
28
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 45
50
Embodied Water, L/kg 330
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
170
Stiffness to Weight: Axial, points 7.1
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 18
17
Strength to Weight: Bending, points 12 to 17
17
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 12 to 20
19

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Copper (Cu), % 89 to 93
86 to 89
Iron (Fe), % 0 to 0.050
2.5 to 4.0
Lead (Pb), % 0 to 0.1
0
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0
0 to 1.0