MakeItFrom.com
Menu (ESC)

C41500 Brass vs. N07750 Nickel

C41500 brass belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 360
770
Tensile Strength: Ultimate (UTS), MPa 340 to 560
1200
Tensile Strength: Yield (Proof), MPa 190 to 550
820

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
60
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 330
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
270
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
1770
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11 to 18
40
Strength to Weight: Bending, points 12 to 17
30
Thermal Diffusivity, mm2/s 37
3.3
Thermal Shock Resistance, points 12 to 20
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 89 to 93
0 to 0.5
Iron (Fe), % 0 to 0.050
5.0 to 9.0
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0