MakeItFrom.com
Menu (ESC)

C41500 Brass vs. R56401 Titanium

C41500 brass belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 42
9.1
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Shear Strength, MPa 220 to 360
560
Tensile Strength: Ultimate (UTS), MPa 340 to 560
940
Tensile Strength: Yield (Proof), MPa 190 to 550
850

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 1030
1610
Melting Onset (Solidus), °C 1010
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
83
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
3440
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 18
59
Strength to Weight: Bending, points 12 to 17
48
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 12 to 20
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 89 to 93
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0