MakeItFrom.com
Menu (ESC)

C41500 Brass vs. S35315 Stainless Steel

C41500 brass belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
46
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 62 to 90
82
Shear Modulus, GPa 42
78
Shear Strength, MPa 220 to 360
520
Tensile Strength: Ultimate (UTS), MPa 340 to 560
740
Tensile Strength: Yield (Proof), MPa 190 to 550
300

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1030
1370
Melting Onset (Solidus), °C 1010
1330
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.7
Embodied Energy, MJ/kg 45
81
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
270
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
230
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
26
Strength to Weight: Bending, points 12 to 17
23
Thermal Diffusivity, mm2/s 37
3.1
Thermal Shock Resistance, points 12 to 20
17

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
33.6 to 40.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0