MakeItFrom.com
Menu (ESC)

C41500 Brass vs. S43940 Stainless Steel

C41500 brass belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
21
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 62 to 90
76
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
310
Tensile Strength: Ultimate (UTS), MPa 340 to 560
490
Tensile Strength: Yield (Proof), MPa 190 to 550
280

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
86
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
200
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
18
Strength to Weight: Bending, points 12 to 17
18
Thermal Diffusivity, mm2/s 37
6.8
Thermal Shock Resistance, points 12 to 20
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
78.2 to 82.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.2
0
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0