MakeItFrom.com
Menu (ESC)

C41500 Brass vs. S45000 Stainless Steel

C41500 brass belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
6.8 to 14
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 360
590 to 830
Tensile Strength: Ultimate (UTS), MPa 340 to 560
980 to 1410
Tensile Strength: Yield (Proof), MPa 190 to 550
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
840
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
850 to 4400
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
35 to 50
Strength to Weight: Bending, points 12 to 17
28 to 36
Thermal Diffusivity, mm2/s 37
4.5
Thermal Shock Resistance, points 12 to 20
33 to 47

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 89 to 93
1.3 to 1.8
Iron (Fe), % 0 to 0.050
72.1 to 79.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0