MakeItFrom.com
Menu (ESC)

C42200 Brass vs. 6182 Aluminum

C42200 brass belongs to the copper alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C42200 brass and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 2.0 to 46
6.8 to 13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 210 to 350
140 to 190
Tensile Strength: Ultimate (UTS), MPa 300 to 610
230 to 320
Tensile Strength: Yield (Proof), MPa 100 to 570
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 1040
640
Melting Onset (Solidus), °C 1020
600
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 32
130

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
110 to 520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 9.5 to 19
23 to 32
Strength to Weight: Bending, points 11 to 18
30 to 38
Thermal Diffusivity, mm2/s 39
65
Thermal Shock Resistance, points 10 to 21
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 86 to 89
0 to 0.1
Iron (Fe), % 0 to 0.050
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0
0.5 to 1.0
Phosphorus (P), % 0 to 0.35
0
Silicon (Si), % 0
0.9 to 1.3
Tin (Sn), % 0.8 to 1.4
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 8.7 to 13.2
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15