MakeItFrom.com
Menu (ESC)

C42200 Brass vs. AISI 204 Stainless Steel

C42200 brass belongs to the copper alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 46
23 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 210 to 350
500 to 700
Tensile Strength: Ultimate (UTS), MPa 300 to 610
730 to 1100
Tensile Strength: Yield (Proof), MPa 100 to 570
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
35
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
360 to 2940
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
27 to 40
Strength to Weight: Bending, points 11 to 18
24 to 31
Thermal Diffusivity, mm2/s 39
4.1
Thermal Shock Resistance, points 10 to 21
16 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
69.6 to 76.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0