MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.0303 Steel

C42200 brass belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
12 to 25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 210 to 350
220 to 260
Tensile Strength: Ultimate (UTS), MPa 300 to 610
290 to 410
Tensile Strength: Yield (Proof), MPa 100 to 570
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 32
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
110 to 270
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 19
10 to 15
Strength to Weight: Bending, points 11 to 18
12 to 16
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 10 to 21
9.2 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
99.335 to 99.71
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.25 to 0.4
Phosphorus (P), % 0 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0