MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.1170 Steel

C42200 brass belongs to the copper alloys classification, while EN 1.1170 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
16 to 17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 210 to 350
390 to 450
Tensile Strength: Ultimate (UTS), MPa 300 to 610
640 to 730
Tensile Strength: Yield (Proof), MPa 100 to 570
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
290 to 670
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 19
23 to 26
Strength to Weight: Bending, points 11 to 18
21 to 23
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 10 to 21
20 to 23

Alloy Composition

Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
96.7 to 98.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.35
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0