MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.4021 Stainless Steel

C42200 brass belongs to the copper alloys classification, while EN 1.4021 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
11 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 210 to 350
390 to 530
Tensile Strength: Ultimate (UTS), MPa 300 to 610
630 to 880
Tensile Strength: Yield (Proof), MPa 100 to 570
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 44
27
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
400 to 1160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
23 to 31
Strength to Weight: Bending, points 11 to 18
21 to 26
Thermal Diffusivity, mm2/s 39
8.1
Thermal Shock Resistance, points 10 to 21
22 to 31

Alloy Composition

Carbon (C), % 0
0.16 to 0.25
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
83.2 to 87.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0