MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.4542 Stainless Steel

C42200 brass belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
5.7 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 210 to 350
550 to 860
Tensile Strength: Ultimate (UTS), MPa 300 to 610
880 to 1470
Tensile Strength: Yield (Proof), MPa 100 to 570
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1020
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
880 to 4360
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
31 to 52
Strength to Weight: Bending, points 11 to 18
26 to 37
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 10 to 21
29 to 49

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86 to 89
3.0 to 5.0
Iron (Fe), % 0 to 0.050
69.6 to 79
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0