MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.4618 Stainless Steel

C42200 brass belongs to the copper alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 46
51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 210 to 350
480 to 500
Tensile Strength: Ultimate (UTS), MPa 300 to 610
680 to 700
Tensile Strength: Yield (Proof), MPa 100 to 570
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1020
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
160 to 170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
24 to 25
Strength to Weight: Bending, points 11 to 18
22 to 23
Thermal Diffusivity, mm2/s 39
4.0
Thermal Shock Resistance, points 10 to 21
15 to 16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 86 to 89
1.0 to 2.5
Iron (Fe), % 0 to 0.050
62.7 to 72.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
5.5 to 9.5
Nickel (Ni), % 0
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.35
0 to 0.070
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0