MakeItFrom.com
Menu (ESC)

C42200 Brass vs. Grade CW6MC Nickel

C42200 brass belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 46
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 300 to 610
540
Tensile Strength: Yield (Proof), MPa 100 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 44
200
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.5 to 19
18
Strength to Weight: Bending, points 11 to 18
17
Thermal Diffusivity, mm2/s 39
2.8
Thermal Shock Resistance, points 10 to 21
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0 to 0.35
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0