MakeItFrom.com
Menu (ESC)

C42200 Brass vs. SAE-AISI 50B60 Steel

C42200 brass belongs to the copper alloys classification, while SAE-AISI 50B60 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is SAE-AISI 50B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
12 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 210 to 350
380
Tensile Strength: Ultimate (UTS), MPa 300 to 610
610 to 630
Tensile Strength: Yield (Proof), MPa 100 to 570
350 to 530

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
71 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
330 to 750
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 19
22 to 23
Strength to Weight: Bending, points 11 to 18
20 to 21
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 10 to 21
20

Alloy Composition

Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
97.3 to 98.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.75 to 1.0
Phosphorus (P), % 0 to 0.35
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0