MakeItFrom.com
Menu (ESC)

C42200 Brass vs. N06002 Nickel

C42200 brass belongs to the copper alloys classification, while N06002 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 46
41
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
81
Shear Strength, MPa 210 to 350
520
Tensile Strength: Ultimate (UTS), MPa 300 to 610
760
Tensile Strength: Yield (Proof), MPa 100 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 1040
1360
Melting Onset (Solidus), °C 1020
1260
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 130
9.9
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.6
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.3
Embodied Energy, MJ/kg 44
130
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.5 to 19
25
Strength to Weight: Bending, points 11 to 18
22
Thermal Diffusivity, mm2/s 39
2.6
Thermal Shock Resistance, points 10 to 21
19

Alloy Composition

Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
17 to 20
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
42.3 to 54
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.8 to 1.4
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0