MakeItFrom.com
Menu (ESC)

C42200 Brass vs. N06025 Nickel

C42200 brass belongs to the copper alloys classification, while N06025 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 46
32
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 210 to 350
500
Tensile Strength: Ultimate (UTS), MPa 300 to 610
760
Tensile Strength: Yield (Proof), MPa 100 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1040
1350
Melting Onset (Solidus), °C 1020
1300
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
50
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 44
120
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 19
26
Strength to Weight: Bending, points 11 to 18
22
Thermal Diffusivity, mm2/s 39
2.9
Thermal Shock Resistance, points 10 to 21
21

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 86 to 89
0 to 0.1
Iron (Fe), % 0 to 0.050
8.0 to 11
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.8 to 1.4
0
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 8.7 to 13.2
0.010 to 0.1
Residuals, % 0 to 0.5
0