MakeItFrom.com
Menu (ESC)

C42200 Brass vs. N07752 Nickel

C42200 brass belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 210 to 350
710
Tensile Strength: Ultimate (UTS), MPa 300 to 610
1120
Tensile Strength: Yield (Proof), MPa 100 to 570
740

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1040
1380
Melting Onset (Solidus), °C 1020
1330
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
1450
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.5 to 19
37
Strength to Weight: Bending, points 11 to 18
29
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 10 to 21
34

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 86 to 89
0 to 0.5
Iron (Fe), % 0 to 0.050
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.35
0 to 0.0080
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 0.8 to 1.4
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 8.7 to 13.2
0 to 0.050
Residuals, % 0 to 0.5
0