MakeItFrom.com
Menu (ESC)

C42200 Brass vs. S44660 Stainless Steel

C42200 brass belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 46
20
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 56 to 87
88
Shear Modulus, GPa 42
81
Shear Strength, MPa 210 to 350
410
Tensile Strength: Ultimate (UTS), MPa 300 to 610
660
Tensile Strength: Yield (Proof), MPa 100 to 570
510

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
21
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 44
61
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
640
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
24
Strength to Weight: Bending, points 11 to 18
22
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 10 to 21
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
60.4 to 71
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.8 to 1.4
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0