MakeItFrom.com
Menu (ESC)

C42500 Brass vs. 324.0 Aluminum

C42500 brass belongs to the copper alloys classification, while 324.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C42500 brass and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 2.0 to 49
3.0 to 4.0
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 310 to 630
210 to 310
Tensile Strength: Yield (Proof), MPa 120 to 590
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1030
610
Melting Onset (Solidus), °C 1010
550
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
34
Electrical Conductivity: Equal Weight (Specific), % IACS 29
120

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
85 to 510
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 18
52
Strength to Weight: Axial, points 9.9 to 20
22 to 32
Strength to Weight: Bending, points 12 to 19
29 to 38
Thermal Diffusivity, mm2/s 36
62
Thermal Shock Resistance, points 11 to 22
9.7 to 14

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.2
Copper (Cu), % 87 to 90
0.4 to 0.6
Iron (Fe), % 0 to 0.050
0 to 1.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.35
0
Silicon (Si), % 0
7.0 to 8.0
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 6.1 to 11.5
0 to 1.0
Residuals, % 0
0 to 0.2