MakeItFrom.com
Menu (ESC)

C42500 Brass vs. ACI-ASTM CG8M Steel

C42500 brass belongs to the copper alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 49
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 310 to 630
550
Tensile Strength: Yield (Proof), MPa 120 to 590
300

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1020
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
20
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 46
56
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
210
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
220
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
19
Strength to Weight: Bending, points 12 to 19
19
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 11 to 22
12

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0 to 0.050
58.8 to 70
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
9.0 to 13
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0