MakeItFrom.com
Menu (ESC)

C42500 Brass vs. ASTM A182 Grade F6b

C42500 brass belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 49
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 360
530
Tensile Strength: Ultimate (UTS), MPa 310 to 630
850
Tensile Strength: Yield (Proof), MPa 120 to 590
710

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
8.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 46
30
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
1280
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
30
Strength to Weight: Bending, points 12 to 19
26
Thermal Diffusivity, mm2/s 36
6.7
Thermal Shock Resistance, points 11 to 22
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 87 to 90
0 to 0.5
Iron (Fe), % 0 to 0.050
81.2 to 87.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0