MakeItFrom.com
Menu (ESC)

C42500 Brass vs. EN 1.4005 Stainless Steel

C42500 brass belongs to the copper alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 49
13 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 360
390 to 450
Tensile Strength: Ultimate (UTS), MPa 310 to 630
630 to 750
Tensile Strength: Yield (Proof), MPa 120 to 590
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
350 to 650
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
23 to 27
Strength to Weight: Bending, points 12 to 19
21 to 24
Thermal Diffusivity, mm2/s 36
8.1
Thermal Shock Resistance, points 11 to 22
23 to 27

Alloy Composition

Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0 to 0.050
82.4 to 87.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0