MakeItFrom.com
Menu (ESC)

C42500 Brass vs. EN 1.4415 Stainless Steel

C42500 brass belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 49
17 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
520 to 570
Tensile Strength: Ultimate (UTS), MPa 310 to 630
830 to 930
Tensile Strength: Yield (Proof), MPa 120 to 590
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
790
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
19
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
1350 to 1790
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
29 to 33
Strength to Weight: Bending, points 12 to 19
25 to 27
Thermal Diffusivity, mm2/s 36
5.1
Thermal Shock Resistance, points 11 to 22
30 to 34

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0 to 0.050
75.9 to 82.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0

Comparable Variants