MakeItFrom.com
Menu (ESC)

C42500 Brass vs. EN 2.4856 Nickel

C42500 brass belongs to the copper alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 49
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
79
Shear Strength, MPa 220 to 360
570
Tensile Strength: Ultimate (UTS), MPa 310 to 630
880
Tensile Strength: Yield (Proof), MPa 120 to 590
430

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 1030
1480
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
200
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
440
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.9 to 20
28
Strength to Weight: Bending, points 12 to 19
24
Thermal Diffusivity, mm2/s 36
2.7
Thermal Shock Resistance, points 11 to 22
29

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 87 to 90
0 to 0.5
Iron (Fe), % 0 to 0.050
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0