MakeItFrom.com
Menu (ESC)

C42500 Brass vs. C94800 Bronze

Both C42500 brass and C94800 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 49
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 310 to 630
310
Tensile Strength: Yield (Proof), MPa 120 to 590
160

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 1030
1030
Melting Onset (Solidus), °C 1010
900
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
12
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.5
Embodied Energy, MJ/kg 46
56
Embodied Water, L/kg 330
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
110
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.9 to 20
9.8
Strength to Weight: Bending, points 12 to 19
12
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 11 to 22
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 87 to 90
84 to 89
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0 to 0.35
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 3.0
4.5 to 6.0
Zinc (Zn), % 6.1 to 11.5
1.0 to 2.5
Residuals, % 0
0 to 1.3