MakeItFrom.com
Menu (ESC)

C42500 Brass vs. R56406 Titanium

C42500 brass belongs to the copper alloys classification, while R56406 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 49
9.1
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 310 to 630
980
Tensile Strength: Yield (Proof), MPa 120 to 590
850

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 1030
1610
Melting Onset (Solidus), °C 1010
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 46
610
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
85
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
3420
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.9 to 20
61
Strength to Weight: Bending, points 12 to 19
49
Thermal Diffusivity, mm2/s 36
2.8
Thermal Shock Resistance, points 11 to 22
69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 87 to 90
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.35
0
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0