MakeItFrom.com
Menu (ESC)

C42500 Brass vs. S17400 Stainless Steel

C42500 brass belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 49
11 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 220 to 360
570 to 830
Tensile Strength: Ultimate (UTS), MPa 310 to 630
910 to 1390
Tensile Strength: Yield (Proof), MPa 120 to 590
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
880 to 4060
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
32 to 49
Strength to Weight: Bending, points 12 to 19
27 to 35
Thermal Diffusivity, mm2/s 36
4.5
Thermal Shock Resistance, points 11 to 22
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 87 to 90
3.0 to 5.0
Iron (Fe), % 0 to 0.050
70.4 to 78.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0