MakeItFrom.com
Menu (ESC)

C42500 Brass vs. S44330 Stainless Steel

C42500 brass belongs to the copper alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C42500 brass and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 49
25
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 60 to 92
79
Shear Modulus, GPa 42
78
Shear Strength, MPa 220 to 360
280
Tensile Strength: Ultimate (UTS), MPa 310 to 630
440
Tensile Strength: Yield (Proof), MPa 120 to 590
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 1010
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 46
40
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 130
91
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 1570
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.9 to 20
16
Strength to Weight: Bending, points 12 to 19
17
Thermal Diffusivity, mm2/s 36
5.7
Thermal Shock Resistance, points 11 to 22
16

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 87 to 90
0.3 to 0.8
Iron (Fe), % 0 to 0.050
72.5 to 79.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0 to 0.8
Zinc (Zn), % 6.1 to 11.5
0
Residuals, % 0 to 0.5
0