MakeItFrom.com
Menu (ESC)

C42600 Brass vs. 4006 Aluminum

C42600 brass belongs to the copper alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C42600 brass and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 1.1 to 40
3.4 to 24
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 280 to 470
70 to 91
Tensile Strength: Ultimate (UTS), MPa 410 to 830
110 to 160
Tensile Strength: Yield (Proof), MPa 220 to 810
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 1030
640
Melting Onset (Solidus), °C 1010
620
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
220
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
56
Electrical Conductivity: Equal Weight (Specific), % IACS 26
180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.1
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
28 to 130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 13 to 27
11 to 16
Strength to Weight: Bending, points 14 to 23
19 to 24
Thermal Diffusivity, mm2/s 33
89
Thermal Shock Resistance, points 15 to 29
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 87 to 90
0 to 0.1
Iron (Fe), % 0.050 to 0.2
0.5 to 0.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0.050 to 0.2
0
Phosphorus (P), % 0.020 to 0.050
0
Silicon (Si), % 0
0.8 to 1.2
Tin (Sn), % 2.5 to 4.0
0
Zinc (Zn), % 5.3 to 10.4
0 to 0.050
Residuals, % 0
0 to 0.15